当前位置:首页 > 实用文 > 说课稿

《圆面积》说课稿

时间:2024-07-12 17:11:38
《圆面积》说课稿

《圆面积》说课稿

作为一名教职工,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。说课稿要怎么写呢?以下是小编为大家收集的《圆面积》说课稿,希望对大家有所帮助。

《圆面积》说课稿1

教学重难点及教法说明:

说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

教学目的要求是:

1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

2.通过教学培养学生初步的空间观念。

3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。

难点是理解公式的推导过程。

关健是弄清圆与转化后的近似长方形之间的关系。

本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

本节课分四个环节来设计教学。

第一个环节:复习导入新课

为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。

第二个环节:新授

教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

(一)公式的推导

1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

2.推导圆面积公式

第一层次教授转化的方法。

让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

第二层次运用转化方法

让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的`面积等于圆的面积。

第三层次推导公式

让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)

回顾学习过程:

将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化

学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

3.小结

让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

4.阶段性练习

a.看标有半径的圆,求面积。

b.已知半径求面积。(练习时交待运算顺序。)

(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

第三个环节:巩固练习

对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

第四个环节:布置作业。

(书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

《圆面积》说课稿2

一、教材分析

1、教材内容

本节内容是从一个小狗活动的实例出发结合学生的生活经验引出圆的面积。

2、教材的地位和作用

在此之前,学生已经学过了圆的周长,弧长等有关概念、公式,在这个基础上,学好本节课,掌握圆的面积公式和有关计算,为学生今后学习和圆有关的图形的面积奠定了基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。

二、目标分析

在素质教育背景下的数学教学应以学生发展为本,培养能力为重,同时也要强化应用意识,所以教学目标的确定应建立在学生的学习过程上,而预备年级的学生只具备一定的形象思维能力,抽象思维能力还不完备,所以根据本节课的特点确定如下教学目标、

1、知识目标:

⑴引导学生通过观察了解圆的面积公式的推导过程

⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

2、能力目标:

使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

3、情感目标:

通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

三、重点难点分析

重点:

圆的面积公式的推导过程以及圆的面积公式的应用。

难点:

在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

四、教法分析

1、教法分析:

针对刚迈入初中的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

2、学法指导

通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

3、教学手段

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

五、教学过程

1、复习

(1)长方形面积公式

(2)平行四边形面积公式平行四边形面积公式的求法是通过割补转化为长方形面积来解决。

2、创设问题情景,引入课题一只小狗被它的主人用一根长1米的绳子栓在草地上,问小狗能够活动的范围有多大?

问题:

1、小狗能够活动的最大面积是一个什么图形?

2、如何求圆的面积呢?

3、师生互动,探索新知

(1)引导:平行四边形面积可以转化成长方形面积,那么圆的面积是否也可以转化成长方形面积来解决呢?

(2)实验操作:教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。

(3)动画展示让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。当我们把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

(4)得出结论:

启发

1、既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

启发

2、长方形的长、宽与圆有什么关系呢?再次展示动画。设圆的半径为r启发学生寻找规律,由圆的周长为2πr,推导得出长方形长为πr,宽为r,圆的面积。

4、实际应用

(1)利用公式解决实际问题:求小狗活动范围的最大面积问题?

(2)例题讲解例题1:已知一个圆的直径为24分米,求这个圆的面积注意书写格式:

1)写出公式

2)代入数字

3)计算结果

4)写出单位。

(3)巩固思考

小明家新买了一个圆桌,妈妈让他求桌面的面积。你能够帮助小明回答吗?

(4)巩固练习

例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

练习:

1、判断题

(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

(2)半径为2厘米的圆的周长与面积相等。()

2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

40cm3、一块直径为40厘米的圆形铝板上,

有4个半径为5厘米的小孔,这块铝板的面积是多少

5、归纳小结为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从以下方面小结,学生先回答,教师归纳总结。体现学生为主体,教师为主导的教学思想。

(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

《《圆面积》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式